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History of Big Data at Google
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Cloud Dataflow is 
a collection of 

SDKs for building 
parallelized data 

processing 
pipelines

Cloud Dataflow is a 
managed service 

for executing 
parallelized data 

processing 
pipelines

What is Cloud Dataflow?



 

ETL

Where might you use Cloud Dataflow?

Analysis Orchestration



 

Movement

Filtering

Enrichment

Shaping

Where might you use Cloud Dataflow?

Reduction
Batch 
computation
Continuous 
computation

Composition

External 
orchestration

Simulation



Dataflow SDK Concepts
(Programming Model)





 

Dataflow SDK(s)

● Easily construct parallelized data processing pipelines using an intuitive 
set of programming abstractions
○ Do what the user expects.
○ No knobs whenever possible. 
○ Build for extensibility.
○ Unified batch & streaming semantics.

● Google supported and open sourced
○ Java 7 (public) @ github.com/GoogleCloudPlatform/DataflowJavaSDK
○ Python 2 (in progress)

● Community sourced
○ Scala @ github.com/darkjh/scalaflow
○ Scala @ github.com/jhlch/scala-dataflow-dsl



 

Dataflow Java SDK Release Process

weekly monthly



• A directed graph of data processing 
transformations

• Optimized and executed as a unit

• May include multiple inputs and 
multiple outputs

• May encompass many logical 
MapReduce or Millwheel operations

• PCollections conceptually flow 
through the pipeline

Pipeline



 

Runners

● Specify how a pipeline should run

● Direct Runner
○ For local, in-memory execution. Great for developing and unit tests

● Cloud Dataflow Service
○ batch mode: GCE instances poll for work items to execute.
○ streaming mode: GCE instances are set up in a semi-permanent topology

● Community sourced
○ Spark from Cloudera @ github.com/cloudera/spark-dataflow 
○ Flink from dataArtisans @ github.com/dataArtisans/flink-dataflow



 

Example: #HashTag Autocompletion



{d->[deflategate, desafiodatransa, djokovic], ...
 de->[deflategate, desafiodatransa, dead50],...}

Count

ExpandPrefixes

Top(3)

Write

Read

{d->(deflategate, 10M), d->(denver, 2M), …,  
 sea->(seahawks, 5M), sea->(seaside, 2M), ...}

ExtractTags

{Go Hawks #Seahawks!, #Seattle works museum pass. Free! 
 Go #PatriotsNation! Having fun at #seaside, … }

{seahawks, seattle, patriotsnation, lovemypats, ...}

{seahawks->5M, seattle->2M, patriots->9M, ...}

Tweets

Predictions



Count

ExpandPrefixes

Top(3)

Write

Read

ExtractTags

Tweets

Predictions

   Pipeline p = Pipeline.create();

   p.begin()

  p.run();

     .apply(ParDo.of(new ExtractTags()))

     .apply(Top.largestPerKey(3))

     .apply(Count.perElement())

     .apply(ParDo.of(new ExpandPrefixes())

     .apply(TextIO.Write.to(“gs://…”));

     .apply(TextIO.Read.from(“gs://…”))



Pipeline
• Directed graph of steps operating on data

   Pipeline p = Pipeline.create();

  p.run();

Dataflow Basics



Pipeline
• Directed graph of steps operating on data

Data
• PCollection

• Immutable collection of same-typed 
elements that can be encoded

• PCollectionTuple, PCollectionList

   Pipeline p = Pipeline.create();

   p.begin()

     .apply(TextIO.Read.from(“gs://…”))

     .apply(TextIO.Write.to(“gs://…”));

  p.run();

Dataflow Basics



Pipeline
• Directed graph of steps operating on data

Data
• PCollection

• Immutable collection of same-typed 
elements that can be encoded

• PCollectionTuple, PCollectionList

Transformation
• Step that operates on data
• Core transforms

• ParDo, GroupByKey, Combine, Flatten
• Composite and custom transforms

   Pipeline p = Pipeline.create();

   p.begin()

     .apply(TextIO.Read.from(“gs://…”))

     .apply(ParDo.of(new ExtractTags()))

     .apply(Count.perElement())

     .apply(ParDo.of(new ExpandPrefixes())

     .apply(Top.largestPerKey(3))

     .apply(TextIO.Write.to(“gs://…”));

  p.run();

Dataflow Basics



   Pipeline p = Pipeline.create();

   p.begin()

     .apply(TextIO.Read.from(“gs://…”))

     .apply(ParDo.of(new ExtractTags()))

     .apply(Count.perElement())

     .apply(ParDo.of(new ExpandPrefixes())

     .apply(Top.largestPerKey(3))

     .apply(TextIO.Write.to(“gs://…”));

  p.run();

class ExpandPrefixes … {
    ...
  public void processElement(ProcessContext c) {
    String word = c.element().getKey();
    for (int i = 1; i <= word.length(); i++) {
      String prefix = word.substring(0, i);
      c.output(KV.of(prefix, c.element()));
    }
  }
}

Dataflow Basics



• A collection of data of type T in a pipeline

• Maybe be either bounded or unbounded in 
size

• Created by using a PTransform to:
• Build from a java.util.Collection
• Read from a backing data store
• Transform an existing PCollection

• Often contain key-value pairs using KV<K, V>

{Seahawks, NFC, Champions, 
Seattle, ...}

{...,
 “NFC Champions #GreenBay”,
 “Green Bay #superbowl!”,
 ...
 “#GoHawks”, 
  ...}

PCollections



• Read from standard Google Cloud Platform 
data sources

• GCS, Pub/Sub, BigQuery, Datastore, ...

• Write your own custom source by teaching 
Dataflow how to read it in parallel

• Write to standard Google Cloud Platform 
data sinks

• GCS, BigQuery, Pub/Sub, Datastore, …

• Can use a combination of text, JSON, XML, 
Avro formatted data

Your
Source/Sink

Here

Inputs & Outputs



• A Coder<T> explains how an element of type T can be written to disk or 
communicated between machines

• Every PCollection<T> needs a valid coder in case the service decides to 
communicate those values between machines.

• Encoded values are used to compare keys -- need to be deterministic.

• Avro Coder inference can infer a coder for many basic Java objects.

Coders



• Processes each element of a PCollection 
independently using a user-provided DoFn

LowerCase

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}

{seahawks, nfc, champions, seattle, ...}



• Processes each element of a PCollection 
independently using a user-provided DoFn

LowerCase

{seahawks, nfc, champions, seattle, ...}

{Seahawks, NFC, Champions, Seattle, ...}

ParDo (“Parallel Do”)

PCollection<String> tweets = …;
tweets.apply(ParDo.of(
  new DoFn<String, String>() {
    @Override
    public void processElement(
        ProcessContext c) {
      c.output(c.element().toLowerCase());
    }));



• Processes each element of a PCollection 
independently using a user-provided DoFn

FilterOutSWords

{NFC, Champions, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}



• Processes each element of a PCollection 
independently using a user-provided DoFn

ExpandPrefixes

{s, se, sea, seah, seaha, seahaw, 
seahawk, seahawks, n, nf, nfc, c, ch, 
cha, cham, champ, champi, champio, 
champion, champions, s, se, sea, seat, 
seatt, seattl, seattle, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}



• Processes each element of a PCollection 
independently using a user-provided DoFn

KeyByFirstLetter

{KV<S, Seahawks>, KV<C,Champions>, 
 <KV<S, Seattle>, KV<N, NFC>, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}



• Processes each element of a PCollection 
independently using a user-provided DoFn

• Elements are processed in arbitrary ‘bundles’ e.
g. “shards”

• startBundle(), processElement()*, 
finishBundle()

• supports arbitrary amounts of 
parallelization

• Corresponds to both the Map and Reduce 
phases in Hadoop i.e. ParDo->GBK->ParDo

KeyByFirstLetter

{KV<S, Seahawks>, KV<C,Champions>, 
 <KV<S, Seattle>, KV<N, NFC>, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}



• Takes a PCollection of key-value pairs and 
gathers up all values with the same key

• Corresponds to the shuffle phase in 
Hadoop

How do you do a GroupByKey on an unbounded 
PCollection?

GroupByKey

{KV<S, Seahawks>, KV<C,Champions>, 
 <KV<S, Seattle>, KV<N, NFC>, ...}

{KV<S, {Seahawks, Seattle, …},
 KV<N, {NFC, …}
 KV<C, {Champion, …}}

GroupByKey



• Logically divide up or groups the elements of 
a PCollection into finite windows

• Fixed Windows: hourly, daily, …
• Sliding Windows
• Sessions

• Required for GroupByKey-based transforms 
on an unbounded PCollection, but can also be 
used for bounded PCollections

• Window.into() can be called at any point in the 
pipeline and will be applied when needed

• Can be tied to arrival time or custom event 
time

Nighttime Mid-Day Nighttime

Windows
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• Determine when to emit elements into an aggregated Window.

• Provide flexibility for dealing with time skew and data lag.

• Example use: Deal with late-arriving data. (Someone was in the woods 
playing Candy Crush offline.)

 
• Example use: Get early results, before all the data in a given window has 

arrived. (Want to know # users per hour, with updates every 5 minutes.)

Triggers



 

Late & Speculative Results
PCollection<KV<String, Long>> sums = Pipeline
  .begin()
  .read(“userRequests”)
  .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))
           .triggering(
             AfterEach.inOrder(
               Repeatedly.forever(
                 AfterProcessingTime.pastFirstElementInPane()
                   .alignedTo(Duration.standardMinutes(1)))
                 .orFinally(AfterWatermark.pastEndOfWindow()),
               Repeatedly.forever(
                 AfterPane.elementCountAtLeast(1)))
                 .orFinally(AfterWatermark.pastEndOfWindow()
                   .plusDelayOf(Duration.standardDays(7))))
           .accumulatingFiredPanes())
  .apply(new Sum());



 

• Define new PTransforms by building 
up subgraphs of existing transforms

• Some utilities are included in the SDK
• Count, RemoveDuplicates, Join, 

Min, Max, Sum, ...

• You can define your own:
• modularity, code reuse
• better monitoring experience

GroupByKey

Pair With Ones

Sum Values

Count

Composite PTransforms



 

Composite PTransforms



Cloud Dataflow Service



Google Cloud Platform

Managed Service

User Code & SDK

Work Manager

Monitoring UI

Job Manager

Life of  a Pipeline

Deploy &
 Schedule

Progress & 
Logs



• Pipeline optimization: Modular code, efficient 
execution

• Smart Workers: Lifecycle management, Auto-Scaling, 
and Dynamic Work Rebalancing

• Easy Monitoring: Dataflow UI, Restful API and CLI, 
Integration with Cloud Logging, Cloud Debugger, etc. 

Cloud Dataflow Service Fundamentals



Graph Optimization

ParDo fusion
Producer Consumer
Sibling
Intelligent fusion boundaries

Combiner lifting e.g. partial aggregations before reduction
Flatten unzipping
Reshard placement
...



Optimizer: ParallelDo Fusion
= ParallelDo

GBK = GroupByKey

+ = CombineValues

C D

C+D

consumer-producer sibling

C D

C+D



Optimizer: Combiner Lifting
= ParallelDo

GBK = GroupByKey

+ = CombineValues

A GBK + B

A+ GBK + B







Deploy Schedule & Monitor Tear Down

Worker Lifecycle Management



800 RPS 1,200 RPS 5,000 RPS 50 RPS

Worker Pool Auto-Scaling



100 mins. 65 mins.

Dynamic Work Rebalancing

vs.



Monitoring





Pipeline management
• Validation
• Pipeline execution graph optimizations
• Dynamic and adaptive sharding of computation stages
• Monitoring UI

Cloud resource management
• Spin worker VMs
• Set up logging
• Manages exports
• Teardown

Fully-managed Service



Ease of use

• No performance tuning required
• Highly scalable, performant out of the box
• Novel techniques to lower e2e execution time

• Intuitive programming model + Java SDK
• No dichotomy between batch and streaming processing

• Integrated with GCP (VMs, GCS, BigQuery, Datastore, …)

Total Cost of Ownership

• Benefits from GCE’s cost model

Benefits of Dataflow on Google Cloud Platform



 

More time to dig 
into your data

Programming

Resource 
provisioning

Performance 
tuning

Monitoring

ReliabilityDeployment & 
configuration

Handling 
Growing ScaleUtilization 

improvements

Data Processing with 
Google Cloud Dataflow

Typical Data 
Processing

Programming

Optimizing your time: no-ops, no-knobs, zero-config



Demo: Counting Words! 



• WordCount Code: See the SDK Concepts in action

• Running on the Dataflow Service
• Monitoring job progress in the Dataflow 

Monitoring UI
• Looking at worker logs in Cloud Logging
• Using the CLI

Highlights from the live demo... 



Questions and Discussion



 

Getting Started

❯ cloud.google.com/dataflow/getting-started

❯ github.com/GoogleCloudPlatform/DataflowJavaSDK

❯ stackoverflow.com/questions/tagged/google-cloud-dataflow


