Google Cloud Dataflow

Cosmin Arad, Senior Software Engineer

carad@google.com

August 7, 2015

o Google Cloud Platform

gendad J%

Dataflow Overview

Dataflow SDK Concepts (Programming Model) HHH
Cloud Dataflow Service

Demo: Counting Words! T

Questions and Discussion 1T

O Google Cloud Platform

SIOIOIONS
i

Cloud Dataflow

History of Big Data at Google

MapReduce

Pregel T MillWheel

2002 2004 2006 2008 2010 2012 2013

Big Table

O Google Cloud Platform

Big Data on Google Cloud Platform

Capture Store Process Analyze
Pub/Sub Cloud BigQuery CloudSQL Cloud Dataflow Hadoop BigQuery Hadoop Larger
Logs Storage Storage (mySQL) Datastore (stream Spark (on Spark (on Hadoop
App Engine (objects) BigTable (NosSQL) and batch) GCE) GCE) Ecosystem
BigQuery streaming (structured)

o Google Cloud Platform

What is Cloud Dataflow?

Cloud Dataflow is
a collection of
SDKs for building
parallelized data
processing
pipelines

©

Cloud Dataflow is a
managed service
for executing
parallelized data
processing
pipelines

O Google Cloud Platform

Where might you use Cloud Dataflow?
) B

ETL Analysis Orchestration

e O Google Cloud Platform

Where might you use Cloud Dataflow?

!
8 V4
- o
- de
)

QO

Movement Reduction Composition

Filtering Batch , External
computation orchestration

Enrichment Continuous

Shaping computation Simulation

e O Google Cloud Platform

Dataflow SDK Concepts
(Programming Model)

@ Google Cloud Platform

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, Sam Whittle
Google
{takidau, robertwb, chambers, chernyak, rfernand,
relax, sgme, millsd, fjp, cloude, samuelw}@google.com

ABSTRACT

Unbounded, unordered. global-scale datasets are increas-
ingly common in day-to-day business (e.g. Web logs. mobile
usage statistics, and sensor networks). At the same time,
consumers of these datasets have evolved sophisticated re-
quirements, such as event-time ordering and windowing by
features of the data themselves, in addition to an insatiable
hunger for faster answers. Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. As a re-
sult, data processing practitioners are left with the quandary
of how to reconcile the tensions between these seemingly
competing propositions, often resulting in disparate imple-
mentations and systems.

1. INTRODUCTION

Modern data processing is a complex and exciting field.
From the scale enabled by MapReduce [16] and its successors
(e.g Hadoop [4]. Pig [18], Hive [29], Spark [33]). to the vast
body of work on streaming within the SQL community (e.g.
query systems [1, 14, 15], windowing [22], data streams [24].
time domains [28], semantic models [9]). to the more recent
forays in low-latency processing such as Spark Streaming
[34], MillWheel, and Storm [5], modern consumers of data
wield remarkable amounts of power in shaping and tam-
ing massive-scale disorder into organized structures with far
greater value. Yet, existing models and systems still fall
short in a number of common use cases.

Consider an initial example: a streaming video provider

Dataflow SDK(s)

e Easily construct parallelized data processing pipelines using an intuitive

set of programming abstractions
o Do what the user expects.
o No knobs whenever possible.
o Build for extensibility.
o Unified batch & streaming semantics.

e Google supported and open sourced
o Java 7 (public) @ github.com/GoogleCloudPlatform/Dataflow]avaSDK
o Python 2 (in progress)

e Community sourced
o Scala @ github.com/darkjh/scalaflow

o Scala @ github.com/jhlch/scala-dataflow-dsl
o Google Cloud Platform

Dataflow Java SDK Release Process VS\/

-

J

monthly

Maven

y
lll
|

GOégle weekly .

e O Google Cloud Platform

Pipeline

—
*

A directed graph of data processing
transformations

Optimized and executed as a unit

May include multiple inputs and
multiple outputs

May encompass many logical
MapReduce or Millwheel operations

PCollections conceptually flow
through the pipeline

Runners

Specify how a pipeline should run

e Direct Runner
o Forlocal, in-memory execution. Great for developing and unit tests

e Cloud Dataflow Service
o batch mode: GCE instances poll for work items to execute.
o streaming mode: GCE instances are set up in a semi-permanent topology

e Community sourced
o Spark from Cloudera @ github.com/cloudera/spark-dataflow
o Flink from dataArtisans @ github.com/dataArtisans/flink-dataflow

o Google Cloud Platform

Example: #HashTag Autocompletion

#SuperBo Q

#SuperBowl
#SuperBowlXLIX

. #superbowlcommercials

-

#SuperBowlSunday

e O Google Cloud Platform

| Tweets
{Go Hawks #Seahawks!, #Seattle works museum pass. Free!
Go #PatriotsNation! Having fun at #seaside, .. }

ExtractTags {seahawks, seattle, patriotsnation, lovemypats, ...}

{seahawks->5M, seattle->2M, patriots->9M, ...}

{d->(deflategate, 10M), d->(denver, 2M), ..,
sea->(seahawks, 5M), sea->(seaside, 2M), ...}

ExpandPrefixes

{d->[deflategate, desafiodatransa, djokovic], .
de->[deflategate, desafiodatransa, dead50],...}

Predictions

Pipeline p = Pipeline.create();
p.begin()

.apply(TextIO.Read.from(“gs://..”))
ExtractTags .apply(ParDo.of (new Extractiags()))
.apply(Count.perElement())
ExpandPrefixes .apply(ParDo.of (new ExpandPrefixes())
.apply(Top.largestPerKey(3))

.apply(TextIO.Write.to(“gs://..”));

Predictions p.run();

Dataflow Basics

Pipeline Pipeline p = Pipeline.create();
« Directed graph of steps operating on data

p.run();

Dataflow Basics

Pipeline Pipeline p = Pipeline.create();
« Directed graph of steps operating on data
p.begin()
Data .apply(TextIO.Read.from(“gs://..”))

+ PCollection

Immutable collection of same-typed
elements that can be encoded

« PCollectionTuple, PCollectionList
.apply(TextIO.Write.to(“gs://..”));

p.run();

Dataflow Basics

Pipeline
« Directed graph of steps operating on data

Data

+ PCollection

« Immutable collection of same-typed
elements that can be encoded

« PCollectionTuple, PCollectionList

Transformation
« Step that operates on data

+ Core transforms
+ ParDo, GroupByKey, Combine, Flatten
« Composite and custom transforms

Pipeline p = Pipeline.create();

p.begin()
.apply(TextIO.Read.from(“gs://..”))
.apply(ParDo.of (new ExtractTags()))
.apply(Count.perElement())
.apply(ParDo.of (new ExpandPrefixes())
.apply(Top.largestPerKey(3))
.apply(TextIO.Write.to(“gs://..”));

p.run();

Dataflow Basics

Pipeline p = Pipeline.create();

p.begin()
.apply(TextIO.Read.from(“gs://..”))

class ExpandPrefixes .. { .apply(ParDo.of (new ExtractTags()))
.apply(Count.perElement())

public void processElement(ProcessContext c) { apply(ParDo.of (new ExpandPrefjxes())

String word = c.element().getKey();

for (int i = 1; i <= word.length(); i++) { -apply(Top gestPerkey(3))
String prefix = word.substring(0, i); .apply(TextIO Write.to(“gs://..”));
c.output(KV.of (prefix, c.element()));

p.run();

PCollections

« A collection of data of type T in a pipeline ,
e {Seahawks, NFC, Champions,
Seattle, ...}
« Maybe be either bounded or unbounded in
Size

» Created by using a PTransform to: o

 Build from a java.util.Collection “NFC Champions #GreenBay”,

+ Read from a backing data store Q “Green Bay #superbowll”,

« Transform an existing PCollection “#GoHawks”

..}

« Often contain key-value pairs using KV<K, V>

Inputs & Outputs

@

Your
Source/Sink
Here

@ O

Read from standard Google Cloud Platform
data sources
« GCS, Pub/Sub, BigQuery, Datastore, ...

Write your own custom source by teaching
Dataflow how to read it in parallel

Write to standard Google Cloud Platform
data sinks
« GCS, BigQuery, Pub/Sub, Datastore, ...

Can use a combination of text, JSON, XML,
Avro formatted data

« A Coder<T> explains how an element of type T can be written to disk or
communicated between machines

« Every PCollection<T> needs a valid coder in case the service decides to
communicate those values between machines.

* Encoded values are used to compare keys -- need to be deterministic.

Avro Coder inference can infer a coder for many basic Java objects.

ParDo (“Parallel Do")

* Processes each element of a PCollection
independently using a user-provided DoFn {Seahawks, NFC, Champions, Seattle, ...}

l

LowerCase

{seahawks, nfc, champions, seattle, ...}

ParDo (“Parallel Do")

* Processes each element of a PCollection
independently using a user-provided DoFn {Seahawks, NFC, Champions, Seattle, ...}

l

PCollection<String> tweets = ..;

LowerCase
tweets.apply (ParDo.of (

new DoFn<String, String>() {

@Override
public void processElement ({seahawks, nfc, champions, seattle, ...}
ProcessContext c) {
c.output (c.element () .toLowerCase()) ;

b))

ParDo (“Parallel Do")

* Processes each element of a PCollection
independently using a user-provided DoFn {Seahawks, NFC, Champions, Seattle, ...}

l

FilterOutSWords

{NFC, Champions, ...}

ParDo (“Parallel Do")

* Processes each element of a PCollection
independently using a user-provided DoFn {Seahawks, NFC, Champions, Seattle, ...}

l

ExpandPrefixes

{s, se, sea, seah, seaha, seahaw,
seahawk, seahawks, n, nf, nfc, c, ch,
cha, cham, champ, champi, champio,
champion, champions, s, se, sea, seat,
seatt, seattl, seattle, ...}

ParDo (“Parallel Do")

* Processes each element of a PCollection
independently using a user-provided DoFn {Seahawks, NFC, Champions, Seattle, ...}

l

KeyByFirstLetter

{KV<S, Seahawks>, KV<C,Champions>,
<KV<S, Seattle>, KV<N, NFC>, ...}

ParDo (“Parallel Do")

* Processes each element of a PCollection

independently using a user-provided DoFn {Seahawks, NFC, Champions, Seattle, ...}
« Elements are processed in arbitrary ‘bundles’ e. l
g. “shards”

KeyByFirstLetter

« startBundle(), processElement()*,
finishBundle()
* supports arbitrary amounts of

parallelization {KV<S, Seahawks>, KV<C,Champions>,

<KV<S, Seattle>, KV<N, NFC>, ...}

« Corresponds to both the Map and Reduce
phases in Hadoop i.e. ParDo->GBK->ParDo

GroupByKey

« Takes a PCollection of key-value pairs and {KV<S, Seahawks>, KV<C,Champions>,
gathers up all values with the same key <KV<S, Seattle>, KV<N, NFC>, ...}
« Corresponds to the shuffle phase in l
Hadoop

GroupByKey

{KV<S, {Seahawks, Seattle, ..},
How do you do a GroupByKey on an unbounded KV<N, {NFC, .}

PCollection? KV<C, {Champion, ..}}

Windows

1
Nighttime

Mid-Day

>
Nighttime

Logically divide up or groups the elements of
a PCollection into finite windows

« Fixed Windows: hourly, daily, ...

« Sliding Windows

« Sessions

Required for GroupByKey-based transforms
on an unbounded PCollection, but can also be
used for bounded PCollections

Window.into() can be called at any point in the
pipeline and will be applied when needed

Can be tied to arrival time or custom event
time

Event Time Skew

Watermark

\

Processing Time

Event Time

Determine when to emit elements into an aggregated Window.

Provide flexibility for dealing with time skew and data lag.

Example use: Deal with late-arriving data. (Someone was in the woods
playing Candy Crush offline.)

Example use: Get early results, before all the data in a given window has
arrived. (Want to know # users per hour, with updates every 5 minutes.)

Late & Speculative Results

PCollection<KV<String, Long>> sums = Pipeline

.begin()
.read(“userRequests”)
.apply(((Duration.standardMinutes(2))

.triggering(
AfterEach.inOrder(
Repeatedly.forever(
AfterProcessingTime.pastFirstElementInPane()
.alignedTo(Duration.standardMinutes(1)))
.orFinally(AfterWatermark.pastEndOfWindow()),
Repeatedly.forever(
AfterPane.elementCountAtLeast(1l)))
.orFinally(AfterWatermark.pastEndOfWindow()
.plusDelayOf (Duration.standardDays(7))))
.accumulatingFiredPanes())

.apply(new ());

Composite PTransforms SR

« Define new PTransforms by building
up subgraphs of existing transforms

« Some utilities are included in the SDK
« Count, RemoveDuplicates, Join,
Min, Max, Sum, ...

* You can define your own:
« modularity, code reuse
* Dbetter monitoring experience

e ') Google Cloud Platform

Composite PTransforms

Pipeline Transformations

Read Transform

Count Transform (SDK-provided) GroupByKey

O Google Cloud Platform

Write Transform

Cloud Dataflow Service

@ Google Cloud Platform

Managed Service

(= Job Manager Work Manager

Life of a Pipeline

User Code & SDK

/ Deploy & Progress &

Schedule Logs
Monitoring Ul

Google Cloud Platform

Cloud Dataflow Service Fundamentals

* Pipeline optimization: Modular code, efficient
execution

« Smart Workers: Lifecycle management, Auto-Scaling,
and Dynamic Work Rebalancing

- Easy Monitoring: Dataflow Ul, Restful APl and CLI,
Integration with Cloud Logging, Cloud Debugger, etc.

Graph Optimization

ParDo fusion
Producer Consumer
Sibling
Intelligent fusion boundaries
Combiner lifting e.g. partial aggregations before reduction
Flatten unzipping
Reshard placement

<> = ParallelDo

Optimizer: ParallelDo Fusion G’>=combmevaues
B

= GroupByKey

consumer-producer sibling

<> = ParallelDo

Optimizer: Combiner Lifting () = Combinevalues

=~
=~ >3-

User-Written Pipeline Inlined Transformations

Pipeline
Transformations Read Transform

(ParDo)

Map Words

Combine Values

FormatCounts
(ParDo)

Write Transform

Inlined Transformations

Read Transform [~

(ParDo)

Map Words -

Combine Values N

FormatCounts
(ParDo) ™~

Write Transform N

Expanded Execution

Optimized Execution Graph

ExtractWords | -~

Read | Extract Words | Count/Map | Count/Combine/1
| Count/Shuffle/Write
(Fused Steps)

Count/Shuffle/Read | Count/Combine/2 | Format |
Write
(Fused Steps)

Graph
Read \
\
\
\
N\
Extract Words N \\
~
S N
N
SN
SN
Map Words -~____\\\
-
- - /
- /
-~ 7
Count/Shuffle/'Write P ‘
/
/
/
/
Count/Shuffie/Close /
/
/
/
Count/Shuffie/Read = = £ = — = -1
/ - ‘s
s 77
- < s
!/ - ay;
Count/CombineValues r‘ /, /I
// /
/ /
/ /
Format 4 /
/
/
/

Write

Worker Lifecycle Management

® beploy Schedule & Monitor rear oo

uuuuuuuuu

50 RPS

5,000 RPS

g
©
©
O
o

800 RPS

o10)
=
'

o
A

@)
+—

-
<C
[e)

@)
(ol

| -

)
'

| -
=

65 mins.

VS.

100 mins.

60
=
O
-
o
5
O
Q
o
¢
|
=
=
-
G
-
>
O

Monitoring

Pipeline Code: Execution Graph:
Java 1 ReadLines
Succeeded
// Read the lines of the input text.
p.apply(TextIO.Read.named("ReadLines").from(options.getInput()))
// Count the words.
.apply(new CountWords()) 1
// Write the formatted word counts to output. CountWords
.apply(TextIO.Write.named("WriteCounts™) Succeeded
.to(options.getOutput())
.withNumShards(options.getNumShards()));
1 WriteCounts

Succeeded

Execution Graph:

Java
. 1 ReadLines
// The CountWords Composite Transform Succeeded
// inside the WordCount pipeline.
public static class CountWords
extends PTransform<PCollection<String>, PCollection<String>> { CountWords A
@Ooverride 2 ExtractWords
public PCollection<String> apply(PCollection<String> lines) { Suceeeded
// Convert lines of text into individual words.
PCollection<String> words = lines.apply(=
ParDo.of(new ExtractWordsFn())); Count.PerElement
Succeeded
// Count the number of times each word occurs.
PCollection<KV<String, Long>> wordCounts =
words.apply(Count.<String>perElement());
.)) 1 FormatCounts
// Format each word and count into a printable string. Succeeded

PCollection<String> results = wordCounts.apply(
ParDo.of(new FormatCountsFn()));

return results;

Fully-managed Service

Pipeline management

« Validation

« Pipeline execution graph optimizations

« Dynamic and adaptive sharding of computation stages
* Monitoring Ul

Cloud resource management
* Spin worker VMs

« Setup logging

« Manages exports

« Teardown

Benefits of Dataflow on Google Cloud Platform

Ease of use

* No performance tuning required

« Highly scalable, performant out of the box

« Novel techniques to lower e2e execution time
* Intuitive programming model + Java SDK

* No dichotomy between batch and streaming processing
* Integrated with GCP (VMs, GCS, BigQuery, Datastore, ...)

Total Cost of Ownership

+ Benefits from GCE's cost model

Optimizing your time: no-ops, no-knobs, zero-config

Monitoring Programming

Programming

Performance
tuning

Resource
provisioning

Handling More time to dig
G ing Scal c
e into your data

Utilization
improvements

Deployment & Reliability
configuration

Typical Data Data Processing with

Processing Google Cloud Dataflow

Demo: Counting Words!

@ Google Cloud Platform

Highlights from the live demao...

» WordCount Code: See the SDK Concepts in action

* Running on the Dataflow Service
* Monitoring job progress in the Dataflow
Monitoring Ul
» Looking at worker logs in Cloud Logging
» Using the CLI

Questions and Discussion

@ Google Cloud Platform

4 W

‘Gettingjiaﬂed_ =

> cloud.google.com/dataflow/getting-started

> github.com/GoogleCloudPlatform/DataflowjavaSDK I

) stackoverflow.com/questions/tagged/google-cloud-dataflow HH

O Google Cloud Platform

