
Google Cloud Dataflow

Cosmin Arad, Senior Software Engineer

carad@google.com

August 7, 2015

Dataflow Overview

Dataflow SDK Concepts (Programming Model)

Cloud Dataflow Service

Demo: Counting Words!

Questions and Discussion

1

2

3

4

5

Agenda

History of Big Data at Google

2012 20132002 2004 2006 2008 2010

Cloud Dataflow

MapReduce

GFS Big Table

Dremel

Pregel

Flume

Colossus

Spanner
MillWheel

StoreCapture Analyze

BigQuery Larger
Hadoop

Ecosystem

Hadoop
Spark (on

GCE)

Pub/Sub
Logs

App Engine
BigQuery streaming

Process

Dataflow
(stream

and batch)

Cloud
Storage
(objects)

Cloud
Datastore
(NoSQL)

Cloud SQL
(mySQL)

BigQuery
Storage
BigTable

(structured)

Hadoop
Spark (on

GCE)

Big Data on Google Cloud Platform

Cloud Dataflow is
a collection of

SDKs for building
parallelized data

processing
pipelines

Cloud Dataflow is a
managed service

for executing
parallelized data

processing
pipelines

What is Cloud Dataflow?

ETL

Where might you use Cloud Dataflow?

Analysis Orchestration

Movement

Filtering

Enrichment

Shaping

Where might you use Cloud Dataflow?

Reduction
Batch
computation
Continuous
computation

Composition

External
orchestration

Simulation

Dataflow SDK Concepts
(Programming Model)

Dataflow SDK(s)

● Easily construct parallelized data processing pipelines using an intuitive
set of programming abstractions
○ Do what the user expects.
○ No knobs whenever possible.
○ Build for extensibility.
○ Unified batch & streaming semantics.

● Google supported and open sourced
○ Java 7 (public) @ github.com/GoogleCloudPlatform/DataflowJavaSDK
○ Python 2 (in progress)

● Community sourced
○ Scala @ github.com/darkjh/scalaflow
○ Scala @ github.com/jhlch/scala-dataflow-dsl

Dataflow Java SDK Release Process

weekly monthly

• A directed graph of data processing
transformations

• Optimized and executed as a unit

• May include multiple inputs and
multiple outputs

• May encompass many logical
MapReduce or Millwheel operations

• PCollections conceptually flow
through the pipeline

Pipeline

Runners

● Specify how a pipeline should run

● Direct Runner
○ For local, in-memory execution. Great for developing and unit tests

● Cloud Dataflow Service
○ batch mode: GCE instances poll for work items to execute.
○ streaming mode: GCE instances are set up in a semi-permanent topology

● Community sourced
○ Spark from Cloudera @ github.com/cloudera/spark-dataflow
○ Flink from dataArtisans @ github.com/dataArtisans/flink-dataflow

Example: #HashTag Autocompletion

{d->[deflategate, desafiodatransa, djokovic], ...
 de->[deflategate, desafiodatransa, dead50],...}

Count

ExpandPrefixes

Top(3)

Write

Read

{d->(deflategate, 10M), d->(denver, 2M), …,
 sea->(seahawks, 5M), sea->(seaside, 2M), ...}

ExtractTags

{Go Hawks #Seahawks!, #Seattle works museum pass. Free!
 Go #PatriotsNation! Having fun at #seaside, … }

{seahawks, seattle, patriotsnation, lovemypats, ...}

{seahawks->5M, seattle->2M, patriots->9M, ...}

Tweets

Predictions

Count

ExpandPrefixes

Top(3)

Write

Read

ExtractTags

Tweets

Predictions

 Pipeline p = Pipeline.create();

 p.begin()

 p.run();

 .apply(ParDo.of(new ExtractTags()))

 .apply(Top.largestPerKey(3))

 .apply(Count.perElement())

 .apply(ParDo.of(new ExpandPrefixes())

 .apply(TextIO.Write.to(“gs://…”));

 .apply(TextIO.Read.from(“gs://…”))

Pipeline
• Directed graph of steps operating on data

 Pipeline p = Pipeline.create();

 p.run();

Dataflow Basics

Pipeline
• Directed graph of steps operating on data

Data
• PCollection

• Immutable collection of same-typed
elements that can be encoded

• PCollectionTuple, PCollectionList

 Pipeline p = Pipeline.create();

 p.begin()

 .apply(TextIO.Read.from(“gs://…”))

 .apply(TextIO.Write.to(“gs://…”));

 p.run();

Dataflow Basics

Pipeline
• Directed graph of steps operating on data

Data
• PCollection

• Immutable collection of same-typed
elements that can be encoded

• PCollectionTuple, PCollectionList

Transformation
• Step that operates on data
• Core transforms

• ParDo, GroupByKey, Combine, Flatten
• Composite and custom transforms

 Pipeline p = Pipeline.create();

 p.begin()

 .apply(TextIO.Read.from(“gs://…”))

 .apply(ParDo.of(new ExtractTags()))

 .apply(Count.perElement())

 .apply(ParDo.of(new ExpandPrefixes())

 .apply(Top.largestPerKey(3))

 .apply(TextIO.Write.to(“gs://…”));

 p.run();

Dataflow Basics

 Pipeline p = Pipeline.create();

 p.begin()

 .apply(TextIO.Read.from(“gs://…”))

 .apply(ParDo.of(new ExtractTags()))

 .apply(Count.perElement())

 .apply(ParDo.of(new ExpandPrefixes())

 .apply(Top.largestPerKey(3))

 .apply(TextIO.Write.to(“gs://…”));

 p.run();

class ExpandPrefixes … {
 ...
 public void processElement(ProcessContext c) {
 String word = c.element().getKey();
 for (int i = 1; i <= word.length(); i++) {
 String prefix = word.substring(0, i);
 c.output(KV.of(prefix, c.element()));
 }
 }
}

Dataflow Basics

• A collection of data of type T in a pipeline

• Maybe be either bounded or unbounded in
size

• Created by using a PTransform to:
• Build from a java.util.Collection
• Read from a backing data store
• Transform an existing PCollection

• Often contain key-value pairs using KV<K, V>

{Seahawks, NFC, Champions,
Seattle, ...}

{...,
 “NFC Champions #GreenBay”,
 “Green Bay #superbowl!”,
 ...
 “#GoHawks”,
 ...}

PCollections

• Read from standard Google Cloud Platform
data sources

• GCS, Pub/Sub, BigQuery, Datastore, ...

• Write your own custom source by teaching
Dataflow how to read it in parallel

• Write to standard Google Cloud Platform
data sinks

• GCS, BigQuery, Pub/Sub, Datastore, …

• Can use a combination of text, JSON, XML,
Avro formatted data

Your
Source/Sink

Here

Inputs & Outputs

• A Coder<T> explains how an element of type T can be written to disk or
communicated between machines

• Every PCollection<T> needs a valid coder in case the service decides to
communicate those values between machines.

• Encoded values are used to compare keys -- need to be deterministic.

• Avro Coder inference can infer a coder for many basic Java objects.

Coders

• Processes each element of a PCollection
independently using a user-provided DoFn

LowerCase

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}

{seahawks, nfc, champions, seattle, ...}

• Processes each element of a PCollection
independently using a user-provided DoFn

LowerCase

{seahawks, nfc, champions, seattle, ...}

{Seahawks, NFC, Champions, Seattle, ...}

ParDo (“Parallel Do”)

PCollection<String> tweets = …;
tweets.apply(ParDo.of(
 new DoFn<String, String>() {
 @Override
 public void processElement(
 ProcessContext c) {
 c.output(c.element().toLowerCase());
 }));

• Processes each element of a PCollection
independently using a user-provided DoFn

FilterOutSWords

{NFC, Champions, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}

• Processes each element of a PCollection
independently using a user-provided DoFn

ExpandPrefixes

{s, se, sea, seah, seaha, seahaw,
seahawk, seahawks, n, nf, nfc, c, ch,
cha, cham, champ, champi, champio,
champion, champions, s, se, sea, seat,
seatt, seattl, seattle, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}

• Processes each element of a PCollection
independently using a user-provided DoFn

KeyByFirstLetter

{KV<S, Seahawks>, KV<C,Champions>,
 <KV<S, Seattle>, KV<N, NFC>, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}

• Processes each element of a PCollection
independently using a user-provided DoFn

• Elements are processed in arbitrary ‘bundles’ e.
g. “shards”

• startBundle(), processElement()*,
finishBundle()

• supports arbitrary amounts of
parallelization

• Corresponds to both the Map and Reduce
phases in Hadoop i.e. ParDo->GBK->ParDo

KeyByFirstLetter

{KV<S, Seahawks>, KV<C,Champions>,
 <KV<S, Seattle>, KV<N, NFC>, ...}

ParDo (“Parallel Do”)

{Seahawks, NFC, Champions, Seattle, ...}

• Takes a PCollection of key-value pairs and
gathers up all values with the same key

• Corresponds to the shuffle phase in
Hadoop

How do you do a GroupByKey on an unbounded
PCollection?

GroupByKey

{KV<S, Seahawks>, KV<C,Champions>,
 <KV<S, Seattle>, KV<N, NFC>, ...}

{KV<S, {Seahawks, Seattle, …},
 KV<N, {NFC, …}
 KV<C, {Champion, …}}

GroupByKey

• Logically divide up or groups the elements of
a PCollection into finite windows

• Fixed Windows: hourly, daily, …
• Sliding Windows
• Sessions

• Required for GroupByKey-based transforms
on an unbounded PCollection, but can also be
used for bounded PCollections

• Window.into() can be called at any point in the
pipeline and will be applied when needed

• Can be tied to arrival time or custom event
time

Nighttime Mid-Day Nighttime

Windows

Event Time Skew

Pr
oc

es
si

ng
 T

im
e

Event Time

Watermark Skew

• Determine when to emit elements into an aggregated Window.

• Provide flexibility for dealing with time skew and data lag.

• Example use: Deal with late-arriving data. (Someone was in the woods
playing Candy Crush offline.)

• Example use: Get early results, before all the data in a given window has

arrived. (Want to know # users per hour, with updates every 5 minutes.)

Triggers

Late & Speculative Results
PCollection<KV<String, Long>> sums = Pipeline
 .begin()
 .read(“userRequests”)
 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))
 .triggering(
 AfterEach.inOrder(
 Repeatedly.forever(
 AfterProcessingTime.pastFirstElementInPane()
 .alignedTo(Duration.standardMinutes(1)))
 .orFinally(AfterWatermark.pastEndOfWindow()),
 Repeatedly.forever(
 AfterPane.elementCountAtLeast(1)))
 .orFinally(AfterWatermark.pastEndOfWindow()
 .plusDelayOf(Duration.standardDays(7))))
 .accumulatingFiredPanes())
 .apply(new Sum());

• Define new PTransforms by building
up subgraphs of existing transforms

• Some utilities are included in the SDK
• Count, RemoveDuplicates, Join,

Min, Max, Sum, ...

• You can define your own:
• modularity, code reuse
• better monitoring experience

GroupByKey

Pair With Ones

Sum Values

Count

Composite PTransforms

Composite PTransforms

Cloud Dataflow Service

Google Cloud Platform

Managed Service

User Code & SDK

Work Manager

Monitoring UI

Job Manager

Life of a Pipeline

Deploy &
 Schedule

Progress &
Logs

• Pipeline optimization: Modular code, efficient
execution

• Smart Workers: Lifecycle management, Auto-Scaling,
and Dynamic Work Rebalancing

• Easy Monitoring: Dataflow UI, Restful API and CLI,
Integration with Cloud Logging, Cloud Debugger, etc.

Cloud Dataflow Service Fundamentals

Graph Optimization

ParDo fusion
Producer Consumer
Sibling
Intelligent fusion boundaries

Combiner lifting e.g. partial aggregations before reduction
Flatten unzipping
Reshard placement
...

Optimizer: ParallelDo Fusion
= ParallelDo

GBK = GroupByKey

+ = CombineValues

C D

C+D

consumer-producer sibling

C D

C+D

Optimizer: Combiner Lifting
= ParallelDo

GBK = GroupByKey

+ = CombineValues

A GBK + B

A+ GBK + B

Deploy Schedule & Monitor Tear Down

Worker Lifecycle Management

800 RPS 1,200 RPS 5,000 RPS 50 RPS

Worker Pool Auto-Scaling

100 mins. 65 mins.

Dynamic Work Rebalancing

vs.

Monitoring

Pipeline management
• Validation
• Pipeline execution graph optimizations
• Dynamic and adaptive sharding of computation stages
• Monitoring UI

Cloud resource management
• Spin worker VMs
• Set up logging
• Manages exports
• Teardown

Fully-managed Service

Ease of use

• No performance tuning required
• Highly scalable, performant out of the box
• Novel techniques to lower e2e execution time

• Intuitive programming model + Java SDK
• No dichotomy between batch and streaming processing

• Integrated with GCP (VMs, GCS, BigQuery, Datastore, …)

Total Cost of Ownership

• Benefits from GCE’s cost model

Benefits of Dataflow on Google Cloud Platform

More time to dig
into your data

Programming

Resource
provisioning

Performance
tuning

Monitoring

ReliabilityDeployment &
configuration

Handling
Growing ScaleUtilization

improvements

Data Processing with
Google Cloud Dataflow

Typical Data
Processing

Programming

Optimizing your time: no-ops, no-knobs, zero-config

Demo: Counting Words!

• WordCount Code: See the SDK Concepts in action

• Running on the Dataflow Service
• Monitoring job progress in the Dataflow

Monitoring UI
• Looking at worker logs in Cloud Logging
• Using the CLI

Highlights from the live demo...

Questions and Discussion

Getting Started

❯ cloud.google.com/dataflow/getting-started

❯ github.com/GoogleCloudPlatform/DataflowJavaSDK

❯ stackoverflow.com/questions/tagged/google-cloud-dataflow

